Muon track length calculation

- Three options were pursued
 - Estimated muon track length: StancuMuvd_L
 - Distance between muon and michel StancuFull vertices
 - OneTrack (Reconstruction) vertices
- These were compared to the "true" track length
 - InputMonteCarlo_VRTX and IFSP numbers

Comparison of Δ_{E} using different track length calculations in May06 MC.

For all events

Note that portions of most distributions extend into negative values.

Comparison to pion energies

Note that the reconstructed curve is shifted to the left

Error in the lookup table

Higher value for $\mu^{\scriptscriptstyle -}$ energy means lower value for $\Delta_{\mathsf E}$

Why is the OneTrackChunk distribution so different?

- OneTrackChunk does reconstruct individual vertices better than StancuFull
- However, I had difficulty ensuring that my second OneTrackChunk was the michel vertex.
- I found it much easier to proceed with Stancu, although with more time I could get the OneTrack calculation to work.

Characterization with $\Delta_{E,}$ by NUANCE channel

Note slight peak separations, and the two peaks for channel 1 in the "truth" graph

Characterization with Δ_{E}

Much better peak separation

Filter based on NUANCE # (Statistical errors not included)

Tested on 539.6K MC events.

Cut	Efficiency	Purity
none	100.00%	3.74%
compulsory	24.42%	5.08%
2.5 < tlb45[0] < 3.5	12.29%	8.27%
fcer[0] > 0.09	9.72%	15.91%
$E_mu > 2.25*TRAK + 250$	6.76%	21.11%
DeltaE[0]>200	4.09%	26.13%
mass[0] > 95	3.81%	26.28%
F[0] > 4	3.62%	26.98%
CER[0] > 40	3.37%	27.64%
200 < Thits[0] < 2000	3.37%	27.64%

Laura's filter: 4.1% efficiency, 22.9% purity.

Note: individual cuts that gave high purity sometimes lowered the purity when combined with other cuts (scintillation, for example)

Filter based on effective CC π^0

Effective filter
Tested on 479.7K MC events

Cut	Efficiency	Purity
none	100.00%	3.33%
basic	25.10%	4.61%
SCI[0] > 0.3*CER[0] + 14	20.30%	19.22%
fcer[0] > 0.1	18.18%	24.19%
2.4 < tlb45[0] < 3.8	14.77%	32.76%
mass[0] > 100	12.74%	35.23%
OneTrack_ $E[0] > 475$	11.18%	36.89%
OneTrack $_{F[0]} > 4$	10.40%	38.11%
TposHits[0] > 600	9.54%	38.47%

Antibox data vs. May06 MC

Number	of MC	c events.	nuance	filter
1 10111001			, ilaalioo	111601

Effective filter

CC QE	192	Pi0	1522
CC Pi0	620	No pi0	2434
CC Pip	686		
Other	796	CC QE	546
		CC Pi0	1046
		CC Pip	1384
		Other	942

861 data events (out of ~1 million)

1356 data events (out of ~1 million)

Anti-box data vs. May06 MC

Scintillation, nuance filter

Effective filter

Data is normalized to MC.

The blue distribution on the right is effective π^0 s

Anti-box data vs. May06 MC

Pi0mass, nuance filter

Effective filter

Data normalized to MC

To do

- 3-ring fitter?
 - Would allow better cut on reconstructed π^0 mass
 - Could confirm the MiniBooNE resonant scattering model.
 - Failing that, incorporate P-fitter into the Δ_{F} calculation.
- Filter more antibox data to get higher statistics.
- Fit the filtered data to determine how many CC π^0 events are actually present.
- Cross section measurement (first a good flux measurement is needed).

Acknowledgments

- Laura J. for doing a large part of the analysis.
- Bonnie, for advising
- Richard I. for proposing the pion energy study
- Jon Link for his help with effective $\pi 0s$.
- Sam Z, for help with the pion energy study, effective π 0s, and for reviewing this talk.
- Heather R. for framework help
- Kendall M. for reviewing the talk